Abstract

Traditional dyeing usually consumes a significant amount of water and salts, thus causing environmental pollution. Salt-free and low-water dyeing has become an important research direction in the cotton fabric dyeing industry. The non-aqueous media dyeing technology, using decamethylcyclopentasiloxane (D5) as the dyeing medium, has achieved energy saving and emission reduction in this industry. To investigate the influence of inorganic salts on the dyeing properties of reactive dyes in a non-aqueous medium dyeing system, the adsorption kinetics and level dyeing property of C.I. Reactive Red 120 were investigated at various concentrations of sodium sulfate. When no salts were included in the siloxane non-aqueous dyeing system, 80% of the reactive dye could diffuse onto the cotton fabric surface after 10 min. However, if 13% salts were added during dyeing, 87% of the reactive dye could diffuse to cotton fabric surface over the same amount of time. Moreover, the adsorption rate of dye was increased from 3.85 mg/g·min to 5.04 mg/g·min when the quantity of salts was increased from 0% to 13%. However, the concentration of sodium sulfate had minimal effect on the color depth of the dyed fabric and the final uptake of dye. But, when the concentration of sodium sulfate was significant, the level dyeing property of the dye became poor as the Sγ(λ) value was increased from 0.020 to 0.042. The adsorption kinetic of C.I. Reactive Red 120 in D5 dyeing solution may be best described by the pseudo-second-order kinetic model. As the sodium sulfate concentration increases, the half-dyeing time gradually decreases and the adsorption rate of dye increases. The repulsive force between the dye and the cotton fiber was lowered by the addition of sodium sulfate. Consequently, in the D5 dyeing system, the level dyeing property of reactive dye may be affected by the adsorption rate. Therefore, the formula of reactive dyes that do not contain salts can be applied successfully in non-aqueous dyeing systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call