Abstract
ZSM-5 zeolite is a multifunctional material highly efficient for adsorbing ions. Our ZSM-5 was synthesized by employing a nucleating gel as a structure-directing agent, followed by homogenization and hydrothermal treatment. The as-prepared ZSM-5 was physicochemically characterized to assess its properties. Next, the as-prepared zeolite was employed as an adsorbent to remove rare earth elements, REEs from synthetic solutions and real phosphogypsum leachate under batch mode operation. As expected, the ZSM-5 adsorbent was discovered to be highly microporous with abundant surface functionalities, which could positively impact REE adsorption. The adsorption data indicated a high affinity between ZSM-5 and all three REEs with rapid kinetics and high adsorption capacities. The modeling study suggested that the adsorption kinetic data were well fitted by Avrami-fractional order, and Liu described the equilibrium data. The maximum adsorption capacity for Ce3+, La3+, and Nd3+ were 99.42 mg g−1, 96.43 mg g−1, 118.10 mg g−1, respectively. Further, the thermodynamic analysis revealed that the interaction between ZSM-5 and Ce3+, La3+, and Nd3+ was favorable, spontaneous, and endothermic. The efficiency of ZSM-5 adsorbent was also studied in recovering several REEs from leachate of phosphogypsum wastes, and the data results proved its potency to do so. The findings reported in this work support the idea that ZSM-5 can be successfully used as an adsorbent to recover REEs from synthetic and real samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.