Abstract

The adsorption of poly(N-isopropylacrylamide) (PNIPAAM), a well known thermosensitive polymer, on glass was investigated by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The polymer was dissolved in water at low (0.02 g/L) and high (2 g/L) concentration and the tested temperatures were below (25 degrees C) and above (50 degrees C) the lower critical solubility temperature (LCST). Whatever the conditions, a smooth layer of adsorbed molecules spread along the surface was observed. The thickness was about twice higher for high concentration compared to low concentration. The cohesion in the adsorbed layer, as revealed by scraping tests performed by AFM, was higher above the LCST than below the LCST. On top of this adsorbed layer, single-chain coils, globules, or aggregates were present, depending on concentration and temperature. The observation of these additional adsorbed entities was poorly reproducible, presumably due to the lack of shear control upon rinsing. These results emphasize the importance of the characterization of surface morphology to interpret amounts of adsorbed polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.