Abstract

Crosslinked chitosan resin chemically modified with l-lysine has been used to investigate the adsorption of Pt(IV), Pd(II) and Au(III) from aqueous solutions. Batch adsorption studies were carried out with various parameters, such as initial metal ion concentration, contact time, pH and temperature. The maximum adsorption capacity was found at pH 1.0 for Pt(IV), at pH 2.0 for Au(III) and Pd(II). Langmuir and Freundlich isotherm models were applied to analyze the experimental data. The best interpretation for the experimental data was given by the Langmuir isotherm and the maximum adsorption capacity was found to be 129.26 mg/g for Pt(IV), 109.47 mg/g for Pd(II) and 70.34 mg/g for Au(III). The kinetic data was tested using pseudo-first-order and pseudo-second-order kinetic models. Kinetic data correlated well with the pseudo-second-order kinetic model, indicating that the chemical sorption was the rate-limiting step. Thermodynamic parameters like Gibbs free energy (Δ G°), enthalpy (Δ H°) and entropy (Δ S°) were evaluated by applying the Van’t Hoff equation. The thermodynamic study indicated that the adsorption process is spontaneous and exothermic in nature. The desorption studies were carried out using various reagents. The maximum percent desorption of precious metal ions were obtained when the reagent 0.7 M thiourea–2 M HCl was used.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call