Abstract

The biodistribution of nanoparticles is significantly influenced by their interaction with plasma proteins. In order to optimize and possibly monitor the delivery of drugs bound to nanoparticles across the blood–brain barrier (BBB), the protein adsorption pattern of uncoated poly(lactic-co-glycolic acid) (PLGA) nanoparticles after their incubation in human plasma was studied by mass spectrometry. After washing of the particles with water, the proteins were directly digested on the nanoparticle surface using trypsin and then analyzed by nLC MALDI-TOF/TOF. Up to now, the standard method for investigation into the plasma protein adsorption to the particles was 2D gel electrophoresis (2D-PAGE), in certain cases followed by mass spectrometry. The non-gel-based method proposed in the present study provides novel insights into the protein corona surrounding the nanoparticles. The proteins adsorbed on the PLGA nanoparticles after incubation that gave the best signal in terms of quality (high MASCOT score) in human plasma were apolipoprotein E, vitronectin, histidine-rich glycoprotein and kininogen-1. These proteins also are constituents of HDL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call