Abstract

For comparing the adsorption of Synthetic Organic Chemicals (SOC) competing with background pollutants between a bifunctional resin and a commercial granular activated carbon (GAC), tannic acid (TA) was preloaded to the two adsorbents at quantities of 60 and 120 μmol/g. As a result, decreases of micropores volume in the resin were 75.5 and 98.9%, while those in the GAC were only 19.0 and 30.0%, respectively. Preloading attenuated surface heterogeneities and phenol’s capacities of two adsorbents distinctly. But maximumly, 1.0 mole TA’s preloading on GAC could decline 9.23 mole phenol’s adsorption. Under the same condition, the resin’s capacity of phenol was only descended at 2.68 times, when 98.9% micropores have been blocked. In kinetic tests, blockages in the resin were misapprehended to be much lighter than those in the GAC by the Homogeneous Surface Diffusion Model (HSDM). One steady operation engineering at micropore volume 37.8% decline was introduced. The conflicts were explained by quite a number of resin’s functional groups in the macroporous and mesoporous region could attract enough phenol molecular rapidly, even if almost all micropores were blocked.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.