Abstract

To study the adsorption of phenol by various modifications of attapulgite, four modifiers (hydrochloric acid, octadecyl trimethyl ammonium chloride, nitrilotriacetic acid and ethanediamine) were chosen and the phenol removal properties of the aqueous solution were explored. All modified attapulgite samples were characterized by SEM and FTIR, which revealed that the modified attapulgites had different surface structures and that the modifier groups successfully grafted onto the surface of the attapulgite. Effects of dosage, pH, the concentration of sodium ions and temperature on the adsorption capacity were evaluated. In this experiment, phenol removal was maximized at an adsorbent’s dosing concentration of 200 g L−1. The sorption kinetic data could be well represented by a pseudo-second-order model. The Langmuir equation agrees very well with the equilibrium isotherm. The findings herein suggest that octadecyl trimethyl ammonium chloride modified attapulgite may be a cost-effective and highly efficient material for phenol removal, with removal rates of more than 90% in aqueous solutions with low concentrations of sodium ions, at room temperature and a pH of 3. In conclusion, octadecyl trimethyl ammonium chloride modified attapulgite was superior to other forms of attapulgite as a phenol absorbent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.