Abstract

The character of the isotherms of specific adsorption of peripheral enzymes to dimeric anchor proteins embedded in the membrane has been analysed. The situations are discussed when adsorption corresponds to the stoichiometry of one or two molecules of peripheral enzyme per dimeric binding site. The corresponding expressions describing the competitive interrelationships between peripheral enzymes adsorbed to the same binding sites have been derived. The experimental data on the adsorption of glycolytic enzymes to erythrocyte membranes are used for the illustration of the theoretical predictions. The physiological role of enzyme self-association which leads to the formation of enzyme oligomers of unlimited length is discussed. It is assumed that under in vivo conditions the association sites of such enzymes are saturated through interactions with anchor proteins of subcellular structures and with the enzymes of the corresponding metabolic pathways. Therefore the linearly associating enzymes play the key role in the formation of multienzyme complexes attached to subcellular structures. The significance of 6-phosphofructokinase adsorption to erythrocyte membranes in the formation of the complex of glycolytic enzymes is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call