Abstract
Adsorption of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) onto modified activated carbons (AC-H3PO4) produced from leaf biomass of Vitis vinifera leaf litter in a fixed bed column experiment was investigated in this study. The column bed was packed with the produced activated carbons in a uniform particle size of ˃ 64μm. Experimental parameters including the initial concentration of the solution, column bed height, the mass of adsorbent and flow rate were optimized to establish the best adsorption efficiency parameters for the system. Breakthrough and saturated time were estimated from the column fixed bed experimental data and analysed using the Adam-Bohart, Thomas model, and Yoon-Nelson models. Maximum sorption capacities of produced activated carbon ACH3PO4 based on Thomas model were 159.61 and 208.64mg/g for PFOA and PFOS, respectively. The results indicated the breakthrough and saturated time of the system increased concurrently with the increase in bed height and initial concentrations, while an increase in flow rate enhanced fractional bed utilization (FBU) efficiency of the column. Thomas and Yoon-Nelson model best describe the prediction of breakthrough data and sorption behaviour of PFOA and PFOS indicating suitability of AC-H3PO4 column design. Findings suggest that agro based adsorbent is a good alternative to non-ago based adsorbent. The surface characteristics of the phosphoric acid modified activated carbons AC-H3PO4 affirmed the removal of PFOA and PFOS from the contaminated water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Environmental Health Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.