Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) have gained increasingly global attention in recent years. Due to their unique amphiphilic properties and stability, PFASs are recognized as highly persistent, toxic, and environmentally bioaccumulative. Among several physicochemical technologies, adsorption has been extensively used and proved to be an effective method for removing PFASs from aqueous environment. In this review article, the technical feasibility of the use of different adsorbents, such as activated carbon, ion exchange resins, minerals, molecularly imprinted polymer (MIP), carbon nanotubes (CNTs), and a wide range of potentially low-cost biosorbents, for PFASs removal from water or wastewater is critically reviewed. The evaluation and comparison of their PFASs sorption behavior in terms of kinetics and isotherms is presented. The mechanisms involved in PFASs adsorption processes, such as diffusion, electrostatic interaction, hydrophobic interaction, ion exchange and hydrogen bond, are discussed. The effects of the parameters variability on sorption process are highlighted. Based on the literature reviewed, a few recommendations for future research on PFASs adsorption are also elaborated.Capsule: The adsorption behavior and mechanisms of perfluoroalkyl and polyfluoroalkyl substances (PFASs) on various adsorbents are reviewed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.