Abstract

In this study, a fresh three-dimensional microsphere adsorbent (CATP@SA3) was successfully synthesized by Attapulgite (ATP) and combining Chitosan (CS), incorporating them into a Sodium alginate (SA) solution, and crosslinking them in a CaCl2 solution. Multiple analyses, including XRD, TGA, FTIR, XPS, SEM-EDS, and BET were utilized to comprehensively characterize the structural makeup of CATP@SA3. These analyses revealed the presence of beneficial functional groups like hydroxyl, amino, and carboxyl groups that enhance the adsorption efficiency in adsorption procedures. CATP@SA3 was evaluated by studying different factors, including material ratio, contact time, dosage, solution pH, Pb(II) concentration, temperature, ionic strength, and aqueous environment. Three adsorption models, including kinetic, isotherm, and thermodynamic, were fitted to the experimental data. The findings demonstrated that the maximum Pb(II) adsorption capacity of CATP@SA3 was 1081.36 mg/g, with a removal rate that exceeded 70 % even after 5 cycles of use. Furthermore, correlation adsorption models revealed that the adsorption process of Pb(II) with CATP@SA3 was driven by a chemical predominantly reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.