Abstract

The adsorption of oxygen on W(100) single crystal surfaces is studied by Auger electron spectroscopy (AES), flash desorption, low-energy electron diffraction (LEED) and retarding field work function measurements with the aim of obtaining a better understanding of the adsorption kinetics and of the structures of the adsorbed layer. The AES results reveal step-wise changes of the sticking coefficients in the coverage range 0 to 1, and activated adsorption at higher coverages. Upon room temperature adsorption a series of complex LEED patterns is observed. In layers adsorbed at 1050 K and cooled to room temperature, the well-known p(2 × 1) structure is the first ordered structure observed. This structure shows a reversible order-disorder transition between 700 K and 1000 K and is characterized by a work function which is lower than that of the clean surface. Heating room temperature adsorbates changes their structure irreversibly. At temperatures below 750 K some new structures are observed. Combining the results obtained in this study with other published work leads to a considerable revision of the previously accepted model of the adsorption of oxygen on W(100).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call