Abstract

New particle formation consists of homogeneous nucleation of thermodynamically stable clusters followed by growth of these clusters to a detectable size. For new particle formation to take place, these clusters need to grow sufficiently fast to escape coagulation with preexisting particles. Previous studies indicated that condensation of low‐volatility organic vapor may play an important role in the initial growth of the clusters. However, due to the relatively high vapor pressure and partial molar volume of even highly oxidized organic compounds, the strong Kelvin effect may prevent typical ambient organics from condensing on these small clusters. Here we show that the adsorption of organic molecules onto the surface of clusters, not considered previously, may significantly reduce the saturation ratio required for the condensation of organics to occur and therefore may provide a physicochemical explanation for the enhanced initial growth by condensation of organics despite the strong Kelvin effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.