Abstract

Organic arsenic acids (OAAs) are regarded as water pollutants because of their toxicity and considerable solubility in water. Adsorption of OAAs such as phenylarsonic acid (PAA) and p-arsanilic acid (ASA) from water was investigated over functionalized (with OH groups) metal-organic framework (MOF, MIL-101), as well as over pristine MIL-101 and commercial activated carbon. The highly porous MIL-101 bearing three hydroxyl groups (MIL-101(OH)3) exhibited remarkable PAA and ASA adsorption capacities. Based on the effects of pH on PAA and ASA adsorption, hydrogen bonding was suggested as a plausible mechanism of OAA adsorption. Importantly, OAAs and MIL-101(OH)3 can be viewed as hydrogen-bond acceptors and donors, respectively. Moreover, MIL-101(OH)3 could be regenerated by acidic ethanol treatment, being a promising adsorbent for the removal of PAA and ASA from water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.