Abstract
The adsorption and complexation of polystyrene sulfonate (a highly charged anionic polyelectrolyte) and dodecyltrimethylammonium bromide (a cationic surfactant) at the air-water interface can lead to interfacial gels that strongly influence foam-film drainage and stability. The formation and characteristics of these gels have been studied by combining surface tension, ellipsometry, and foam-film drainage experiments. Simultaneously, the solution electromotive force is measured and used to track the polymer-surfactant interactions in the bulk solution. We find that surface gelation occurs above the critical aggregation concentration in solution but before bulk precipitation of the polymer-surfactant complexes. Furthermore, we reveal that strong readsorption of polymer-surfactant complexes occurs during the resolubilization of the precipitated complexes at high surfactant concentrations (i.e., >>critical micelle concentration). Seemingly overlooked in the past, this readsorption significantly influences the surface rheological properties and foam-film drainage of these systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.