Abstract

First-principles calculations based on density functional theory (DFT) have been performed to study O adsorption in on-surface and subsurface sites. For different coverages, hollow site is found to be the most stable on-surface adsorption site. For the subsurface adsorption at the bare Mo surface, the adsorption energies are found to be higher than those at the on-surface sites, suggesting that these sites are less stable. However, the presence of preadsorbed O overlayer enhances the binding energy of subsurface adsorption, particularly for the adsorption of O at octahedral site. Further, vibrational frequencies, work-function and density of states are presented for O adsorption in on-surface sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.