Abstract
High sensitivity of ozone-treated graphene towards detecting NO2 is experimentally reported in literature with a sensor response reaching 1.3 ppb at room temperature. The present investigation focuses on understanding the mechanisms and reasons behind such a high sensitivity. In this study, the adsorption properties of NO and NO2 molecules on graphene with mono-vacancy (VC) and ozone-treated graphene (OTG) are studied based on density functional theory (DFT). Our theoretical results show that C vacancies have the ability to produce chemisorption with NO, NO2 and O3 molecules. These molecules are shown to be oxidizing to the vacancy and draining charges from the surface. Fermi level of VC and OTG with and without adsorption of gas molecules lies in the middle of conduction band and reveals their metallic character. Based on metallic behavior of studied systems, Drude model of conductivity is explored to evaluate the sensor response towards NO, NO2 and O3. The results show that the chemisorption of NO2 on VC would lead to high sensor response, compared to that of NO and O3. These results are consistent with the experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.