Abstract

To study the mechanism of physical adsorption of supercritical gases, the adsorption equilibria of N2 on silica gel for 103–298 K using 20 K increments and pressures up to 10 MPa were measured. A transition of the adsorption mechanism was proven on crossing the critical temperature, but the transition way observed is different from that observed with activated carbon. This causes a difference in the locations of the linear section of the n-ρ g isotherm at the near-critical temperature. Although the isotherm type is different on silica gel and on activated carbon in the sub-critical region, all isotherms in the supercritical region can be well modeled by a single model. It leads to the argument that the adsorption mechanism of supercritical gases is identical no matter what kind of adsorbent is used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call