Abstract

The sorption of nickel on synthetic hydroxyapatite was investigated using a batch method and radiotracer technique. The hydroxyapatite samples used in experiments were a commercial hydroxyapatite and hydroxyapatite of high crystallinity with Ca/P ratio of 1.563 and 1.688, respectively, prepared by a wet precipitation process. The sorption of nickel on hydroxyapatite was pH independent ranging from 4.5 to 6.5 as a result of buffering properties of hydroxyapatite. The adsorption of nickel was rapid and the percentage of Ni sorption on both samples of hydroxyapatite was >98 % during the first 15–30 min of the contact time for initial Ni2+ concentration of 1 × 10−4 mol dm−3. The experimental data for sorption of nickel have been interpreted in the term of Langmuir isotherm and the value of maximum sorption capacity of nickel on a commercial hydroxyapatite and hydroxyapatite prepared by wet precipitation process was calculated to be 0.184 and 0.247 mmol g−1, respectively. The sorption of Ni2+ ions was performed by ion-exchange with Ca2+ cations on the crystal surface of hydroxyapatite under experimental conditions. The competition effect of Co2+ and Fe2+ towards Ni2+ sorption was stronger than that of Ca2+ ions. NH4 + ions have no apparent effect on nickel sorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call