Abstract

The adsorption properties (equilibrium, kinetics, and column breakthrough) of five model flavonoids (myricetrin, puerarin, naringin, rutin and neohesperidin dihydrochalcone) on selected macroporous resins were investigated in order to identify a suitable resin adsorbent for effective separation and purification of flavonoids from the extracts of herbal plants. It was observed that the resins with a low polarity and a high specific surface area have high adsorption capacities for all five flavonoids. Both the Langmuir and Freundlich isotherm equations correlate well the adsorption equilibrium data of the five flavonoids on four selected resins, and adsorption enthalpy, entropy, and free energy of the five flavonoids on HPD300 resin were calculated from the adsorption isotherms by the Freundlich equation constants. The pseudo-second-order adsorption rate equation fits the kinetic data on four selected resins better than the pseudo-first-order adsorption rate equation, and the initial adsorption rates were c...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.