Abstract

A generalization of the Stern theory is derived to treat the simultaneous adsorption of monovalent cations and divalent cations by single-component phospholipid membranes, where the ion:phospholipid binding stoichiometries are 1:1 for the monovalent cations and 1:1 and/or 1:2 for the divalent cations. This study treats both the situation in which the monovalent and divalent cations compete for membrane binding sites and that in which they do not compete. The general formalism of the screening/binding problem is reviewed, and it is shown how the adsorption problem can be isolated from the electrostatics. The statistical mechanics of mixed 1:1- and 1:2-stoichiometric adsorption (the monomer-dimer problem) is treated, and the problem of simultaneous 1:1 and 1:2 binding is solved. A simple expression for this solution, given in the Bethe approximation, is combined with the electrostatics to yield an adsorption isotherm encompassing both 1:1 monovalent-cation, and 1:1 and 1:2 divalent-cation, binding to charged membranes. A comparison with the simplified treatment of previous authors is made and the significance of their assumptions clarified in light of the present result. The present and previous treatments are plotted for a representative case of Na+ and Ca++ binding to a phosphatidylserine membrane. Criteria are established to permit unambiguous experimental testing of the present vs. previous treatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call