Abstract
The adsorption of polymers, copolymers, surfactants, and biopolymers is often used to engineer surfaces. Towards improving our understanding of polymer adsorption we report simulation results for the adsorption of model copolymers, resembling surfactants, on nanoscale patterned hydrophobic surfaces at infinitely dilute concentrations. The surfactants are composed by a hydrophobic tail and a hydrophilic head. Surfactant adsorption on the hydrophobic surface occurs in the tail-down configuration in which the tail segments are in contact with the surface. We investigate how the presence of a solid hard mask, used to create the nanoscale pattern on the underlying hydrophobic surface, affects the surfactant adsorption. We find that surfactant adsorption on the underlying hydrophobic surface is prevented when the characteristic dimensions of the solid hard mask are less than twice the radius of gyration. We also show that details about mask-surfactant head effective interactions have the potential to alter the characteristics of adsorption. When the mask repels the head segments, the surfactants hardly adsorb on the underlying hydrophobic surface. When the mask strongly attracts the surfactant heads, the surfactants may preferentially adsorb on the mask rather than on the underlying hydrophobic surface. Under these latter circumstances the adsorbed surfactants in some cases assume a head-down configuration in which the head segments are in contact with the mask and the tail segments extend towards the bulk solution. We explain our results in terms of enthalpy and entropy of adsorption and discuss practical implications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.