Abstract

In this work, the possibility of using Raphia taedigera seed as a low-cost adsorbent to remove methylene blue (MB) dye from aqueous solutions was investigated. The activated carbon was prepared by carbonization and chemical treatment of the seed with sulphuric acid to produce acid-modified Raphia taedigera seed activated carbon (RTAC). The surface morphology and bond arrangement of the RTAC were evaluated using the scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR), respectively. The SEM analysis results revealed that the prepared adsorbent had aggregated and rough surface structure with pores and FTIR revealed the presence of several functional groups such as –C=O, –OH, –C=C–, –N=O and –C=N–. The adsorption efficiency of the RTAC for the removal of the MB dye was assessed under different experimental conditions including, contact time, temperature, pH, adsorbent dosage, and dye initial concentration. The results gave the performances of 99.611% after 15 min, 99.635% at 303 K, 99.894% at pH 9, 99.256% with 0.9 g, and 99.743% for 40 mg/L for evaluating the effect of the contact time, temperature, pH, adsorbent dosage, and dye solutions initial concentration, respectively. The adsorption of the MB dye onto the RTAC conformed to Langmuir isotherm and fit best to pseudo-second-order kinetic models. Thermodynamic studies indicated a spontaneous, endothermic, feasible, and physisorption nature of the RTAC and MB dye interactions. The present study found the acid-modified Raphia taedigera seed activated carbon to be a promising low-cost adsorbent for the removal of MB dye from aqueous solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.