Abstract

In the present study, the adsorptive removal of methylene blue (MB) from wastewater was studied using the novel composite prepared by sodium alginate (SA) and flax seed ash (FS). The adsorption of MB was carried out using the composite beads consisting of different weight amounts of FS at different pH values and temperatures using different dye concentrations. The characterization studies of the composite beads were performed using Fourier-Transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and Brunauer-Emmett-Teller and Barrett-Joyner-Hallenda (BET-BJH) analyses. BET and BJH surface area values of SA-FS adsorbent beads were found to be 45.01 m2/g and 14.35 m2/g, respectively. During the studies, it was determined that the adsorption percentage of MB reached the maximum with 90% at pH = 7 and 50 °C. Furthermore, Langmuir model fits well for the adsorption of MB using SA-FS with different FS ratios, SA, and FS adsorbents. The maximum adsorption capacity obtained from Langmuir model was found to be 333.3 mg/g for SA-FS-2 composite beads at pH = 7 and 50 °C. The adsorption kinetics were interpreted well by pseudo-second order model for SA, FS and SA-FS adsorbents. The calculated thermodynamic parameters indicated that MB adsorption by FS, SA, and SA-FS were spontaneous and an endothermic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.