Abstract

A continuous adsorption study in a fixed-bed column was carried out by using phoenix tree leaf powder as an adsorbent for the removal of methylene blue (MB) from aqueous solution. The effect of flow rate, influent MB concentration and bed depth on the adsorption characteristics of adsorbent was investigated at pH 7.4. Data confirmed that the breakthrough curves were dependent on flow rate, initial concentration of dye and bed depth. Four kinetic models, Thomas, Adams–Bohart, Yoon–Nelson and Clark, were applied to experimental data to predict the breakthrough curves using nonlinear regression and to determine the characteristic parameters of the column that are useful for process design, while a bed-depth service time analysis (BDST) model was used to express the effect of bed depth on breakthrough curves and to predict the time needed for breakthrough at other conditions. The Thomas and Clark models were found suitable for the description of whole breakthrough curve, while the Adams–Bohart model was only used to predict the initial part of the dynamic process. The data were in good agreement with the BDST model. It was concluded that the leaf powder column can be used in wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.