Abstract

Grand Canonical Monte Carlo (GCMC) method is employed to simulate the adsorption of methane in several nanoporous zeolites. Adsorption isotherms over the temperature 177-398K and the pressure 0-12MPa are simulated. And their adsorption capacities of methane in these zeolites at different temperatures and pressures are also compared. The results show that: (1) the methane uptake is in the order of LTA>MOR>MFI at the same condition. The isosteric heat can support this conclusion: the value of isosteric heat in LTA is the largest, intermediate in MOR and the least in MFI. (2) The effects of the pore volume, channel size and the energetic interactions between zeolite and methane on adsorption amounts are considered. A large pore volume and a suitable channel size near to the kinetic diameter of a methane molecule are very important for improving the storage capacity of zeolites. Based on this, we conclude that LTA zeolite with a large pore volume and a suitable channel diameter exhibit a most efficient methane storage capacity than MOR and MFI zeolites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.