Abstract
The adsorption equilibria of methane, ethane and their binary mixture in single-walled carbon nanotubes (SWNTs) and slit-shaped carbonaceous pores were studied by using a Grand Canonical Monte Carlo (GCMC) method. We used a slit-shaped pore for microporous structure of activated carbons and an armchair type of cylindrical pore for SWNTs. Methane was modeled as a spherical Lennard-Jones (LJ) model and ethane as two LJ sites with the unified methyl group. The isotherms of both components in micropore region displayed Type I adsorption by Brunauer et al., which corresponds to unimolecular adsorption. At low pressure the storage capacity of SWNTs for pure components of methane and ethane was higher than that for slit-shaped pore geometries of the same size, and the selectivities of equimolar bulk gas mixture were much higher. GCMC was shown to give good qualitative agreement with Ideal Adsorbed Solution Theory (IAST).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.