Abstract

Chitosan/zeolite-X (CHS/ZX) was synthesized to serve as an effective adsorbent for metal porphyrins through adsorption processes as an alternative to traditional separation methods from crude oil. The adsorption-desorption mechanisms of vanadyl and nickel tetraphenyl porphyrin (VO-TPP and Ni-TPP) were conducted on the model solution. Compared to individual components CHS and ZX, the CHS/ZX composite exhibited a doubled capacity for metal porphyrin removal. The synthesized composite was systematically characterized using FESEM, BET, XRD, FTIR, TGA, XPS, and CHN analyses. The study investigated the impact of many factors, including temperature, initial metal-porphyrin concentration, CHS/ZX dose, and contact time, on the adsorption efficiency of metal-porphyrin using CHS/ZX adsorbents. The adsorption processes of VO-TPP and Ni-TPP on CHS/ZX were effectively assessed through various equilibrium models, such as Langmuir, Freundlich, and Dubinin-Radushkevich (D-R). The pseudo-second-order model accurately depicted the adsorption processes of both VO-TPP and Ni-TPP. Determining the point of zero charge (pHPZC) highlighted the composite's surface charge distribution. Furthermore, considering the ΔG° and ΔH° values, the adsorption processes at different temperatures are exothermic, and VO-TPP exhibits a greater adsorption capacity than Ni-TPP under similar conditions. Notably, 73.7 % of VO-TPP and 83.8 % of Ni-TPP that were adsorbed were successfully recovered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.