Abstract

Due to strong activity, it is very difficult to remove low concentrations of bromide in medical wastewater by traditional method, thus highly effective and greener adsorbents should be utilized to design. In this work, the cellulose beads (CBs) were modified by the TEMPO-mediated oxidation and then bonded with Fe3+ to fabricate Fe(III)-complexed carboxylated cellulose beads (Fe-CCBs) adsorbents. Structure and properties of Fe-CCBs were analyzed using Energy dispersive spectrum (EDS), Scanning electron microscopy (SEM), Fourier transform infrared spectrum (FT-IR), total acidity and basicity groups, X-ray diffraction (XRD), N2 adsorption-desorption and Thermogravimetric (TGA). Moreover, batch adsorption experiments showed that the adsorption of Br− was better consistent with general-order kinetic model and Liu isotherm model, which could also further clarify the adsorption process mechanism. Meanwhile, the results revealed that removal of Br- was a spontaneous exothermic process and was more suitable to be carried out under neutral or acidic conditions. Furthermore, the mechanism of adsorption behavior of bromide ions on Fe-CCBs was based on a combination of electrostatic attraction and outer-sphere complexation. The results of this study can provide guidance for the design of novel material adsorbents and the removal of harmful anions from aqueous solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.