Abstract

The separation of short-chained alkanes and alkenes is challenging because of their chemical similarity and thus being costly in energy. The implementation of a cryogenic adsorption process may overcome this problem, but systematic studies on light hydrocarbon adsorption at low temperatures are virtually lacking. Therefore, as a first step, in this paper, we present single-component adsorption isotherms of ethane, ethylene, propane, and propylene on activated carbon (AC) and zeolite 13X for temperatures of −80 to +20 °C and partial pressures of 5–1250 Pa. Based on these experimental data, the interactions of the adsorptives with the chemically different surfaces and their temperature dependence are discussed. Results show a strong increase in capacity with decreasing temperature for both AC and zeolite 13X. Cryogenic adsorption increases the overall (calculated) selectivity of alkane–alkene separation, especially for the zeolite 13X.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.