Abstract

Adsorption of La, Eu, and Lu on red clay was studied in an initial concentration range of 10−4–10−3 mol/dm3 and a pH range of 2–10. Among the different forms of red clay: T-clay (thermally modified), R-clay (raw, unmodified), Na-clay (sodium form), H-clay (acid form), and HDTMA-clay (surfactant-modified form), T-clay was found to be the most effective adsorbent of the lanthanides studied. The adsorption/desorption isotherms, i.e. log Kd versus log ceq dependencies, had a linear character. Among the investigated lanthanides, Eu was most strongly bound by the clay surface and, therefore, parameters a (slopes of the lines log Kd = alog ceq + b) of Eu were the highest compared to those for La and Lu. Desorption isotherms were located above adsorption isotherms, which resulted from chemiadsorption of the investigated lanthanides. Changes in lanthanide adsorption with pH were successfully modelled based on the molar fractions of Ln3+, LnOH2+, LnCO3+, and Ln(CO3)2− species in the aqueous phase [Ln—lanthanide(III)].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.