Abstract

Cancer theranostics combines therapeutic and diagnostic capabilities into a single system to treat cancer efficiently. Biocompatible nanomaterials can be engineered to exhibit cancer theranostic functions, for instance radiosensitization and photoluminescence. In this study, trivalent Bi and Eu ions were co-substituted into the lattice of hydroxyapatite (Bi(III):Eu(III) HAp) to develop a cancer theranostic nanocrystal. Bi provides radiosensitization capabilities while Eu imparts photoluminescence properties. To complement the radiotherapeutic function, l-buthionine sulfoximine (l-BSO) was adsorbed onto the nanocrystal surface. l-BSO inhibits the biosynthesis of cellular antioxidants, which can enhance radiosensitization effects. The Bi(III):Eu(III) HAp nanocrystals were prepared via a hydrothermal method. Structural and compositional analyses showed that both Bi and Eu ions were substituted into the HAp lattice. l-BSO was adsorbed onto the surface via electrostatic interactions between the charged carboxyl and amino groups of l-BSO and the surface ions of the nanocrystals. The adsorption followed the Langmuir isotherm model, implying a homogeneous monolayer adsorption. The l-BSO adsorbed Bi(III):Eu(III) HAp nanocrystals were found to have negligible cytotoxicity except the setting with l-BSO adsorbed amounts of 0.44 μmol/m2. This l-BSO amount was found to be high enough to elicit cytotoxicity due to l-BSO being released and causing excessive antioxidant depletion. Gamma ray irradiation clearly activated the cytotoxicity of the samples and increased the cell death rate, confirming radiosensitization abilities. At a constant amount of nanocrystals, the cell death rate increases with l-BSO concentration. This indicates that l-BSO can enhance the radiosensitization effect of the Bi(III):Eu(III) HAp nanocrystals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call