Abstract

An ionic liquid (IL), 1-butyl-3-methyl-imiazolium hexafluorophosphate [BMIm]PF6, was coated onto halloysite nanotubes (HNTs) in tetrahydrofuran–water mixture. The IL layers on the HNTs were confirmed by thermogravimetric analysis, diffuse reflectance infrared Fourier transform spectroscopy, determination of contact angle, and porosity analysis. The interaction between IL and HNTs, proposed to be hydrogen bonding, was verified by various spectral results such as Raman spectroscopy, nuclear magnetic resonance and X-ray photoelectron spectroscopy. Because of their interaction, the crystallization behavior of IL in the presence of HNTs was found to be changed, as indicated by the results of differential scanning calorimetry. The IL-coated HNTs (m-HNTs) were used as reinforcement for styrene–butadiene rubber. Compared with the compounds with uncoated HNTs, the uncured compounds with m-HNTs showed faster curing, and the resulting vulcanizates showed substantially higher tensile strength and much lower hardness. The unique changes in the compounds are correlated to the changes in filler dispersion and interaction between IL and HNTs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call