Abstract

Hydrogen sulfide (H2S) is a naturally occurring component found during microbial disintegration and processing of natural gas & oil which can cause wellbeing and condition issue if being discharged into a climate at high fixation. Activated carbon which cost a lot in manufacturing is used as an adsorbent for removing these hazardous gases. As an alternative, the abundance waste of biomass available can be converted into good use. Biochar is one of the most practical and promising adsorbents that shows incredible potential as an adsorbent for the expulsion of contaminants in wastewater and gas treatment. This study covered on the characteristics and adsorption performance of two adsorbents Activated Rice Husk Biochar (RHB) and Rice Husk Hydrogel Composite (RH-HBC) on hydrogen sulfide. RHB is prepared by treating grinded rice husk biochar using aqueous Zinc Chloride (ZnCl2) and hydrochloric acid (HCl) solution to increase the size of pores of active sites and remove the impurities present in on the adsorbents. Polymerization is conducted by using initiator (ammonium persulfate, APS), monomer (acrylamide, AAm) and crosslinker (N,N'-methylenebisacrylamide,MBA) to create treated hydrogel biochar (RH-HBC). The adsorption performance is done to evaluate the effect of sorbent weight (20 g, 25 g, 30 g), H2S gas flow rate (200 L/hr, 150 L/hr, 100 L/hr) and temperature (30℃, 50℃, 70℃). RHB shows better porosity compared to RH-HBC where it has a higher surface area (222.85m2/g) compared to RH-HBC (8.68m2/g). While the presence of alkene group C=C in RH-HBC gives more stability to withstand high temperature compared to RHB. From the result, it can be concluded that the increased the sorbent weight, give an increased in adsorption capacity. When increased the gas flow rate, it gives a shorter contact time between gas and adsorbent which result in less adsorption capacity. RH-HBC give longest breakthrough time and highest adsorption capacity compared with RHB in all experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.