Abstract

We present molecular dynamics (MD) simulations and density functional theory (DFT) calculations of hydrogen adsorption on single-walled carbon nanotubes (SWCNT) with various kinds of defects. The nature of defects, which is characterized here by the number of carbon atoms present in a ring on the surface of nanotube, plays a significant role in determining the hydrogen adsorption capacity of the SWCNT. Nanotubes containing the Stone–Wales defect with 5 and 8-member rings were found to have the largest hydrogen adsorption ability that increases further with the number of rings with such defects. Whereas, the presence of defects with 5, 3-5-8-member rings and the Stone–Wales defect with 5 and 7-member rings decreases the adsorption ability of the defective SWCNT significantly with respect to defect-free nanotubes. Our results indicate that the huge discrepancies in hydrogen storage capacities of SWCNT reported in the literature could be attributed to the nature of defects present in nanotubes. DFT calculations also reveal that the adsorption energy depends not only on the nature and number of defects present on the surface of nanotube but also on the equilibrium structure of rings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.