Abstract

Hydrogen adsorption at room temperature on a clean (110) surface of a nickel single crystal is accompanied by reconstructive rearrangement of the surface metal atoms to form a (2×1) surface structure. It is possible to remove this adsorbed hydrogen and obtain a planar surface by heating the crystal slightly above room temperature. A determination of the temperatures and equilibrium hydrogen pressures necessary to remove this adsorbed hydrogen yields an isosteric heat of adsorption of 1.2 eV. Oxygen displaces the hydrogen in the (2×1) structure from the surface and results in the formation of the (1×2) structure characteristic of adsorbed oxygen. This oxygen can be removed from the surface, however, by heating the crystal to 200°C in hydrogen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.