Abstract

A detailed study of the interaction of hydrogen and carbon monoxide with two different Rh(1 1 1)/V surface alloys (1/3 monolayer of V in the second atomic layer or 1/3 monolayer of V in form of islands on the surface) is presented in comparison to the clean Rh(1 1 1) surface. For hydrogen a decrease in the sticking coefficient is found for both alloy surfaces. The sticking coefficient of H 2 as a function of the translational energy is similar to the Rh(1 1 1) surface, showing a direct activated adsorption mechanism. For low translational energies hydrogen adsorption is dominated by dynamical steering on Rh(1 1 1) and by a precursor mechanism on the Rh(1 1 1)/V subsurface alloy. The H 2 TPD desorption peaks are shifted to lower temperatures on the alloy surfaces, caused by the downshift of the metal d-band due to V alloying. On all three surfaces the saturation coverage of hydrogen was measured, giving 1.2, 1.0 and 0.8 monolayer for Rh(1 1 1), the Rh(1 1 1)/V subsurface alloy and for the Rh(1 1 1)/V islands, respectively. For CO the sticking coefficients and the saturation coverages are basically the same on the Rh(1 1 1) and the alloy surfaces. There is an extrinsic precursor on the ordered CO (√3×√3) phase on the Rh(1 1 1) surface, but there is no evidence for such a precursor on the Rh(1 1 1)/V subsurface alloy. On the Rh(1 1 1)/V islands surface, the extrinsic precursor exists on the Rh(1 1 1) surface between the V islands. Apparently this precursor is only stable on the ordered CO layer on Rh(1 1 1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.