Abstract

Adsorption of H2O, NH3 and C6H6 on H- and alkali metal-exchanged structures of mordenite and on corresponding cations on the smectite layer is investigated by ab initio density-functional calculations. Proton or an alkali metal cation compensates one Al/Si framework substitution and resides in the extra-framework position of zeolite or above flat smectite layer close to the Al/Si substitution. Pronounced similarities between zeolite and smectite are observed in changes of the adsorption energies and location of the external cation with changing character of the external cation. Calculated adsorption energies exhibit the following trend: E(NH3) > E(H2O) > E(C6H6). Because of looser contact with the framework, zeolitic cations are stronger adsorption centers and calculated adsorption energies of zeolites are by ~20–30% larger than cations of smectites. The highest adsorption energy is calculated for H-exchanged structures and down the group of alkali metal cations a decrease of the adsorption energy is observed. Deviations from the smooth variation of the adsorption energy are caused by: (1) formation of strong hydrogen bonds in H-exchanged structures, (2) adsorption induced migration of the external Li+ cation, and (3) steric hindrances of the flat C6H6 molecule adsorbed on the cation in the cage of zeolite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.