Abstract
Density functional theory calculations show that H2, Cl2, and HCl molecules chemisorb dissociatively on the Cr2O3(0001) surface, which can be terminated by Cr atoms, Chromyl groups (Cr=O), or O atoms. It is investigated that these molecules energetically prefer to adsorb dissociatively than in molecular form. Several dissociative adsorption sites have been considered for all the molecules on all the differently terminated surfaces and the corresponding adsorption energies are calculated. Dissociation energy barriers are estimated with the nudged elastic band method. Notable results from the dissociative adsorptions of Cl2 and H2 are the formation of a CrCl2 complex on the Cr terminated surface, and H2O complex on the O and the Cr=O terminated surfaces, and a H2O layer on the Cr=O terminated surface. Dissociative adsorption of HCl is less favored on the Cr=O and O terminated surfaces than on the Cr terminated surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.