Abstract

The adsorption of two taste- and odor-causing compounds, namely MIB (2-methyl isoborneol—C11H20O) and geosmin (C12H22O) on activated carbon was investigated in this study. The impact of adsorbent pore size distribution on adsorption of MIB and geosmin was evaluated through single solute and multicomponent adsorption of these compounds on three types of activated carbon fibers (ACFs) and one granular activated carbon (GAC). The ACFs (ACC-15, ACC-20, and ACC-25) with different degrees of activation had narrow pore size distributions and specific critical pore diameters whereas the GAC (F-400) had a wider pore size distribution and lesser microporosity. The effect of the presence of natural organic matter (NOM) on MIB and geosmin adsorption was also studied for both the single solute and binary systems. The Myers equation was used to evaluate the single solute isotherms as it converges to Henry’s law at low coverage and also serves as an input for predicting multicomponent adsorption. The single solute adsorption isotherms fit the Myers equation well and pore size distribution significantly influenced adsorption on the ACFs and GAC. The ideal adsorbed solute theory (IAST), which is a well-established thermodynamic model for multicomponent adsorption, was used to predict the binary adsorption of MIB and geosmin. The IAST predicted well the binary adsorption on the ACFs and GAC. Binary adsorption isotherms were also conducted in the presence of oxygen (oxic) and absence of oxygen (anoxic). There were no significant differences in the binary isotherm between the oxic and anoxic conditions, indicating that adsorption was purely through physical adsorption and no oligomerization was taking place. Binary adsorptions for the four adsorbents were also conducted in the presence of humic acid to determine the effect of NOM and to compare with IAST predictions. The presence of NOM interestingly resulted in deviation from IAST behavior in case of two adsorbents, ACC-15 and F-400.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call