Abstract

AbstractIn this study, the synthesis process of TiZnPbO nanocomposite and its use for the removal of Basic Fuchsin (BF) dye from wastewater was studied. The influence of contact duration (90 min), concentration (200 mg/L), solution pH (3.0), and adsorbent dosage (0.2 g) on adsorption studies were thoroughly examined. The kinetic models (pseudo‐first‐order and pseudo‐second‐order) and isotherm models (Langmuir and Freundlich) are used to understand the adsorption mechanism and behavior of BF over adsorbents. According to the kinetic data, the models fit a pseudo‐second‐order equation which is an indication of a heterogeneous chemisorption process. The Langmuir isotherm is best fitted with R2 of 0.999 and a maximum adsorption capacity of 208.33 mg/g. It was determined that the values of n for the adsorption of BF on TiZnPbO at 298 K were less than unity (n=0.516, 0.504, and 0.501). This finding showed that the BF dyes should be adsorbed on this adsorbent in a non‐parallel orientation. As for BF adsorption on TiZnPbO, the isotherm data indicated that it behaved more like a multilayer than a monolayer. The TiZnPbO adsorbent showed high recyclability at least 5 times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.