Abstract

The adsorption of four commercial non-ionic cellulose derivatives onto two different model surfaces of cellulose fibres has been studied with surface plasmon reflectance. The model surfaces of cellulose were ultrathin films of either nano fibrillated cellulose or regenerated cellulose on Au(s). Partial least squares models were used in the analysis of the data and it was found that the type of cellulose model surface seems to be most important for both the total adsorption and the initial adsorption rate of the studied cellulose derivatives. It is believed that this can be explained by morphological differences between the surfaces, and it was found that the properties of the cellulose derivatives that affect the adsorption of the two types of cellulose surface differ. For adsorption onto a NFC-based model surface, the type of cellulose derivative and the polydispersity index (PDI) of the cellulose derivative seem to be the two most important variables for the observed adsorption of these cellulose derivatives. For the regenerated cellulose surface the three most important variables are the Mn of the cellulose derivatives, the DSNMR of the methyl celluloses, and PDI of the cellulose derivatives. Thus the adsorption of cellulose derivatives on the NFC-based cellulose model surface is strongly affected by the type of substituent, while the same cannot be said for a surface regenerated from N-methylmorpholine-N-oxide. Additionally, the DSNMR of methyl celluloses affects their adsorption differently on the investigated cellulose model surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.