Abstract

The adsorption of formaldehyde (HCHO) on Pt(111) and Pt(100) electrodes was examined by cyclic voltammetry (CV) and in situ scanning tunneling microscopy (STM) in 0.1 M HClO(4). The extent of HCHO adsorption at both Pt electrodes was evaluated by comparing the CVs, particularly for the hydrogen adsorption and desorption between 0.05 and 0.4 V, obtained in 0.1 M HClO(4) with and without HCHO. The adsorption of HCHO on these Pt electrodes was significant only when [HCHO] >/= 10 mM. Adsorbed organic intermediate species acted as poisons, blocking Pt surfaces and causing delays in the oxidation of HCHO. Compared to Pt(111), Pt(100) was more prone to poisoning, as indicated by a 200 mV positive shift of the onset of HCHO oxidation. However, Pt(100) exhibited an activity 3 times higher than that of Pt(111), as indicated by the difference in peak current density of HCHO oxidation. Molecular resolution STM revealed highly ordered structures of Pt(111)-( radical7 x radical7)R19.1 degrees and Pt(100)-( radical2 x radical2) in the potential region between 0.1 and 0.3 V. Voltammetric measurements further showed that the organic poisons produced by HCHO adsorption behaved differently from the intentionally dosed CO admolecules, which supports the assumption for the formation of HCO or COH adspecies, rather than CO, as the poison. On both Pt electrodes, HCHO oxidation commenced preferentially at step sites at the onset potential of this reaction, but it occurred uniformly at the peak potentials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.