Abstract
The adsorption of ethanol on V2O5 (010) surface was investigated by means of density functional theory (DFT) with a combined generalized gradient approximation (GGA) plus Hubbard U approach to exploit the potential sensing applications. The adsorption configurations were first constructed by considering different orientations of ethanol molecule to V and O sites on the “Hill”- and “Valley”-like regions of corrugated (010) surface. It is found that ethanol molecule can adsorb on whole surface in multiple stable configurations. Nevertheless the molecular adsorption on the “Hill”-like surface is calculated to occur preferentially, and the single coordinated oxygen on “Hill”-like surface (O1(H)) acting as the most energetically favorable adsorption site shows the strongest adsorption ability to ethanol molecule. Surface adsorption of ethanol tunes the electronic structure of V2O5 and cause an n-doping effect. As a consequence, the Fermi levels shift toward the conductive bond increasing the charge carrier concentration of electrons in adsorbed V2O5. The sensitive electronic structure and the multiple stable configurations to ethanol adsorption highlight the high adsorption activity and then the potential of V2O5 (010) surface applied to high sensitive sensor for ethanol vapor detection. Further Mulliken population and Natural bond orbital (NBO) calculations quantify the electron transfer from the adsorbed ethanol to the surface, and correlates the adsorption ability of surface sites with the charge donation and dispersion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.