Abstract

The adsorption of particles at liquid-liquid interfaces is of great scientific and technological importance. In particular, for nonspherical particles, the capillary forces that drive adsorption vary with position and orientation, and complex adsorption pathways have been predicted by simulations. On the basis of the latter, it has been suggested that the timescales of adsorption are determined by a balance between capillary and viscous forces. However, several recent experimental results point out the role of contact line pinning in the adsorption of particles to interfaces and even suggest that the adsorption dynamics and pathways are completely determined by the latter, with the timescales of adsorption being determined solely by particle characteristics. In the present work, the adsorption trajectories of model ellipsoidal particles are investigated experimentally using cryo-SEM and by monitoring the altitudinal orientation angle using high-speed confocal microscopy. By varying the viscosity and the viscosity jump across the interfaces, we specifically interrogate the role of viscous forces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.