Abstract

The interactions between dodecyl trimethylammonium bromide (C12TAB) and two samples of DNA with widely differing molecular weights have been studied using surface tension and neutron reflectometry. Neutron reflection data show that the surfactant and polymer are adsorbed together in a highly cooperative fashion over a 1000-fold change in surfactant concentration. Furthermore, the shorter DNA fragments adsorb with C12TAB as trilayers at higher surfactant concentrations, with overall layer thicknesses of 65-70 A. The high molecular weight DNA, however, shows only approximate monolayer adsorption with thicknesses varying from 19 to 26 A over the entire range of C12TAB concentrations. The difference in behavior between the different samples is believed to be a result of the rigid double helical structure of DNA which makes the formation of bulk phase polymer/micelle aggregates much less favorable for the short fragments. The resulting increase in the critical aggregation concentration (CAC) then leads to the adsorption of additional surfactant/polymer complex to the underside of the initial stable surface active DNA/C12TAB complex. Comparison with previous results obtained for synthetic polyelectrolytes shows that DNA/C12TAB complexes are not capable of reducing the surface tensions to the extent that other mixtures such as the poly(styrene sulfonate)/C12TAB mixtures do. A possible reason for this is the high rigidity of DNA combined with the fact that its hydrophobic moieties are positioned within the double helix so that the external molecule is largely hydrophilic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.