Abstract
The adsorption of dioxygen to copper in CuHY zeolites has been studied by means of FTIR spectroscopy and model calculations at the quantum mechanical/molecular mechanics (QM/MM) level. Different Si/Al ratios, substitution patterns and adsorption sites within the cavities of the zeolite lead to a large number of different isomers to be studied. In addition, these parameters control the end-on vs. side-on adsorption of dioxygen. High-level multireference benchmark calculations for the singlet and triplet states of such adsorption complexes corroborate the use of density functional theory for the investigation of these systems. Comparison of the experimental and computed data allows for the identification of a preferred adsorption site and a small number of isomers which appear to be most relevant for the adsorption process. Redshifts of >250 cm(-1) are obtained for the vibrational frequencies of adsorbed O(2).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.