Abstract
We studied the adsorption of small coinage metal aggregates Mn (M = Cu, Ag, Au; n=2,3) on the ideal MgO(001) as well as on oxygen vacancies, Fs and Fs + using a first-principle computational approach. We applied a generalized-gradient density functional in combination with cluster embedding in an elastic polarizable environment, which provides an accurate description of substrate relaxation. In the same way as single adsorbed atoms, metal moieties on regular O2- surface sites are polarized and interact mainly by electrostatic attraction, counteracted by Pauli repulsion. However, adsorption on vacancies involves some transfer of electron density to the adsorbate, particularly for Au2. Our cluster results for Cu2 and Cu3 on regular O2- sites agree quantitatively with previous results of periodic slab models. The adsorption energy per atom decreases from dimers to trimers in line with the fact that metal-metal cohesion dominates over metal-oxide interaction. Compared to regular sites on flat terraces, dimerization is not particularly favorable on Fs sites and it is unfavorable on Fs + sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.