Abstract

Cyanobacterial extracellular polymeric substances (EPSs) in aquatic environments are easily adsorbed onto colloidal particles, whereas the adsorption behavior as affected by molecular weight (MW) properties remained unknown till now. Herein, the bulk cyanobacterial EPS matrix (<0.45μm) was fractionated into high MW (HMW-, 1kDa~0.45μm) and low MW (LMW-, <1kDa) fractions, with MW-dependent adsorption heterogeneities onto TiO2 colloids exploring through batch experiment, UV-Vis and fluorescence spectroscopy, and two dimensional Fourier transform infrared correlation spectroscopy (2D-FTIR-COS). About two-thirds of total organic matters within bulk EPS matrix were distributed in the HMW fraction, leaving one-third in the LMW fraction. Compared to LMW-EPS, the HMW counterpart exhibited higher aromaticity and richness of autochthonous protein-like substances, showing evident MW-dependent differences in abundance and composition. The adsorption capacity based on the measurement of total abundance, UV-Vis and fluorescent spectra all decreased in sequence of HMW->Bulk>LMW-EPS, demonstrating obvious MW-dependent adsorption heterogeneities. During adsorption, the values of SUVA254 in residual supernatants exhibited an initial decrease followed by gradual increase for all samples, suggesting that the preferentially adsorbed aromatic substances can be subsequently replaced by the non-aromatic moieties. 2D-FTIR-COS further revealed that the carboxylic groups of proteins were preferentially adsorbed onto colloidal surface, followed by the CC functional groups and then the CH groups of polysaccharides, which accounted for the variations of SUVA254 values in the supernatants. This study demonstrated that the adsorption behavior of EPS matrix was highly MW-dependent, and detailed characterization on size fractionation is thus needed in future studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.