Abstract

The roles of the extractable components (Mn oxides, Fe oxides, and organic materials) of surficial sediments in controlling metals adsorption were investigated. Cu and Zn adsorptions were conducted before and after the surficial sediments extracted with hydroxylamine hydrochloride, an oxalate solution, and H 2 O 2 , respectively. The extraction removed target components with extraction efficiencies from 63 to 98%. Nonlinear regression analyses of Cu and Zn adsorptions based on the assumption of additive Langmuir adsorption isotherm were employed to estimate the relative contributions of sediment components to Cu and Zn adsorptions. The results indicate that the greatest contribution to total Cu and Zn adsorption to the surficial sediments on a molar basis was from Mn oxides in the extractable fractions. Both Cu and Zn adsorption capacities of Mn oxides exceeded those of Fe oxides by approximately one order of magnitude, fewer roles were attributed to the adsorption of organic material (OM), and the estimated contribution of the residual fraction to total Cu and Zn adsorption was insignificant. These information implied that the roles of metal oxides (Fe and Mn oxides) in the extractable form of the surficial sediments, especially Mn oxides, was the most important component in controlling heavy metal transportation in aquatic environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.